
6
The Jump to Universality

The earliest writing systems used stylized pictures
– ‘pictograms’ – to represent words or concepts.
So a symbol like ‘ ’ might stand for ‘sun’, and ‘ ’
for ‘tree’. But no system ever came close to having
a pictogram for every word in its spoken language.
Why not?

Originally, there was no intention to do so.
Writing was for specialized applications such as
inventories and tax records. Later, new
applications would require larger vocabularies,
but by then scribes would increasingly have found
it easier to add new rules to their writing system
rather than new pictograms. For example, in some
systems, if a word sounded like two or more other
words in sequence, it could be represented by the
pictograms for those words. If English were
written in pictograms, that would allow us to
write the word ‘treason’ as ‘ ’. This would not
represent the sound of the word precisely (nor
does its actual spelling, for that matter), but it
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would approximate it well enough for any reader
who spoke the language and was aware of the
rule.

Following that innovation, there would have
been less incentive to coin new pictograms – say ‘
’ for ‘treason’. Coining one would always have

been tedious, not so much because designing
memorable pictograms is hard – though it is – but
because, before one could use it, one would
somehow have to inform all intended readers of
its meaning. That is hard to do: if it had been
easy, there would have been much less need for
writing in the first place. In cases where the rule
could be applied instead, it was more efficient:
any scribe could write ‘ ’ and be understood
even by a reader who had never seen the word
written before.

However, the rule could not be applied in all
cases: it could not represent any new single-
syllable words, nor many other words. It seems
clumsy and inadequate compared to modern
writing systems. Yet there was already something
significant about it which no purely pictographic
system could achieve: it brought words into the
writing system that no one had explicitly added.
That means that it had reach. And reach always
has an explanation. Just as in science a simple
formula may summarize a mass of facts, so a
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simple, easily remembered rule can bring many
additional words into a writing system, but only if
it reflects an underlying regularity. The regularity
in this case is that all the words in any given
language are built out of only a few dozen
‘elementary sounds’, with each language using a
different set chosen from the enormous range of
sounds that the human voice can produce. Why? I
shall come to that below.

As the rules of a writing system were improved,
a significant threshold could be crossed: the
system could become universal for that language –
capable of representing every word in it. For
example, consider the following variant of the rule
that I have just described: instead of building
words out of other words, build them out of the
initial sounds of other words. So, if English were
written in pictograms, the new rule would allow
‘treason’ to be spelled with the pictograms for
‘Tent’, ‘Rock’, ‘EAgle’, ‘Zebra’, ‘Nose’. That tiny
change in the rules would make the system
universal. It is thought that the earliest alphabets
evolved from rules like that.

Universality achieved through rules has a
different character from that of a completed list
(such as the hypothetical complete set of
pictograms). One difference is that the rules can
be much simpler than the list. The individual
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symbols can be simpler too, because there are
fewer of them. But there is more to it than that.
Since a rule works by exploiting regularities in the
language, it implicitly encodes those regularities,
and so contains more knowledge than the list. An
alphabet, for instance, contains knowledge of
what words sound like. That allows it to be used
by a foreigner to learn to speak the language,
while pictograms could at most be used to learn to
write it. Rules can also accommodate inflections
such as prefixes and suffixes without adding
complexity to the writing system, thus allowing
written texts to encode more of the grammar of
sentences. Also, a writing system based on an
alphabet can cover not only every word but every
possible word in its language, so that words that
have yet to be coined already have a place in it.
Then, instead of each new word temporarily
breaking the system, the system can itself be used
to coin new words, in an easy and decentralized
way.

Or, at least, it could have been. It would be nice
to think that the unknown scribe who created the
first alphabet knew that he was making one of the
greatest discoveries of all time. But he may not
have. If he did, he certainly failed to pass his
enthusiasm on to many others. For, in the event,
the power of universality that I have just
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described was rarely used in ancient times, even
when it was available. Although pictographic
writing systems were invented in many societies,
and universal alphabets did sometimes evolve
from them in the way I have just described, the
‘obvious’ next step – namely to use the alphabet
universally and to drop the pictograms – was
almost never taken. Alphabets were confined to
special purposes such as writing rare words or
transliterating foreign names. Some historians
believe that the idea of an alphabet-based writing
system was conceived only once in human history
– by some unknown predecessors of the
Phoenicians, who then spread it throughout the
Mediterranean – so that every alphabet-based
writing system that has ever existed is either
descended from or inspired by that Phoenician
one. But even the Phoenician system had no
vowels, which diminished some of the advantages
I have mentioned. The Greeks added vowels.

It is sometimes suggested that scribes
deliberately limited the use of alphabets for fear
that their livelihoods would be threatened by a
system that was too easy to learn. But perhaps
that is forcing too modern an interpretation on
them. I suspect that neither the opportunities nor
the pitfalls of universality ever occurred to anyone
until much later in history. Those ancient
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innovators only ever cared about the specific
problems they were confronting – to write
particular words – and, in order to do that, one of
them invented a rule that happened to be
universal. Such an attitude may seem implausibly
parochial. But things were parochial in those days.

And indeed it seems to be a recurring theme in
the early history of many fields that universality,
when it was achieved, was not the primary
objective, if it was an objective at all. A small
change in a system to meet a parochial purpose
just happened to make the system universal as
well. This is the jump to universality.

Just as writing dates back to the dawn of
civilization, so do numerals. Mathematicians
nowadays distinguish between numbers, which are
abstract entities, and numerals, which are physical
symbols that represent numbers; but numerals
were discovered first. They evolved from ‘tally
marks’ (  . . .) or tokens such as stones,
which had been used since prehistoric times to
keep track of discrete entities such as animals or
days. If one made a mark for each goat released
from a pen, and later crossed one out for each
goat that returned, then one would have retrieved
all the goats when one had crossed out all the
marks.

That is a universal system of tallying. But, like
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levels of emergence, there is a hierarchy of
universality. The next level above tallying is
counting, which involves numerals. When tallying
goats one is merely thinking ‘another, and
another, and another’; but when counting them
one is thinking ‘forty, forty-one, forty-two . . . ’

It is only with hindsight that we can regard tally
marks as a system of numerals, known as the
‘unary’ system. As such, it is an impractical
system. For instance, even the simplest operations
on numbers represented by tally marks, such as
comparing them, doing arithmetic, and even just
copying them, involves repeating the entire
tallying process. If you had forty goats, and sold
twenty, and had tally-mark records of both those
numbers, you would still have to perform twenty
individual deletion operations to bring your
record up to date. Similarly, checking whether
two fairly close numerals were the same would
involve tallying them against each other. So
people began to improve the system. The earliest
improvement may have been simply to group the
tally marks – for instance, writing  instead
of . This made arithmetic and comparison
easier, since one could tally whole groups and see
at a glance that  is different from 
Later, such groups were themselves represented by
shorthand symbols: the ancient Roman system
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used symbols like  , and  to represent
one, five, ten, fifty, one hundred, five hundred,
and one thousand. (So they were not quite the
same as the ‘Roman numerals’ we use today.)

So this was another story of incremental
improvements intended to solve specific, parochial
problems. And, again, it seems that no one aspired
to anything more. Even though adding simple
rules could make the system much more powerful,
and even though the Romans did occasionally add
some such rules, they did this without ever aiming
for, or achieving, universality. For some centuries,
the rules of their system were:

– Placing symbols side by side means adding them
together. (This rule was inherited from the tally-
mark system.)

– Symbols must be written in order of decreasing
value from left to right; and

– Adjacent symbols must be replaced by the
symbol for their combined value whenever
possible.

(The subtractive rule in today’s ‘Roman
numerals’, where IV represents four, was
introduced later.) The second and third rules
ensure that each number has only one
representation, which makes comparison much
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easier. Without them, XIXIXIXIXIX and
VXVXVXVXV would both be valid numerals, and
one could not tell at a glance that they represent
the same number.

By exploiting the universal laws of addition,
those rules gave the system some important reach
beyond tallying – such as the ability to perform
arithmetic. For example, consider the numbers
seven (VII) and eight (VIII). The rules say that
placing them side by side – VIIVIII – is the same
as adding them. Then they tell us to rearrange the
symbols in order of decreasing value: VVIIIII.
Then they tell us to replace the two V’s by X, and
the five I’s by V. The result is XV, which is the
representation of fifteen. Something new has
happened here, which is more than just a matter
of shorthand: an abstract truth has been
discovered, and proved, about seven, eight and
fifteen without anyone having counted or tallied
anything. Numbers have been manipulated in
their own right, via their numerals.

I mean it literally when I say that it was the
system of numerals that performed arithmetic. The
human users of the system did of course
physically enact those transformations. But to do
that, they first had to encode the system’s rules
somewhere in their brains, and then they had to
execute them as a computer executes its program.
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And it is the program that instructs its computer
what to do, not vice versa. Hence the process that
we call ‘using Roman numerals to do arithmetic’
also consists of the Roman-numeral system using
us to do arithmetic.

It was only by causing people to do this that the
Roman-numeral system survived – that is to say,
caused itself to be copied from generation to
generation of Romans: they found it useful, so
they passed it on to their offspring. As I have said,
knowledge is information which, when it is
physically embodied in a suitable environment,
tends to cause itself to remain so.

To speak of the Roman-numeral system as
controlling us in order to get itself replicated and
preserved may sound like relegating humans to
the status of slaves. But that would be a
misconception. People consist of abstract
information, including the distinctive ideas,
theories, intentions, feelings and other states of
mind that characterize an ‘I’. To object to being
‘controlled’ by Roman numerals when we find
them helpful is like protesting at being controlled
by one’s own intentions. By that argument, it is
slavery to escape from slavery. But in fact when I
obey the program that constitutes me (or when I
obey the laws of physics), ‘obey’ means something
different from what a slave does. The two
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meanings explain events at different levels of
emergence.

Contrary to what is sometimes said, there were
also fairly efficient ways of multiplying and
dividing Roman numerals. So a ship with XX
crates, each containing jars in a V-by-VII grid,
could be known to hold CC jars altogether
without anyone having performed the lengthy
count that was implicit in that numeral. And one
could tell at a glance that CC was less than 
CCI. Thus, manipulating numbers independently
of tallying or counting opened up applications
such as calculating prices, wages, taxes, interest
rates and so on. It was also a conceptual advance
that opened the door to future progress. However,
in regard to these more sophisticated applications,
the system was not universal. Since there was no
higher-valued symbol than  (one thousand), the
numerals from two thousand onwards all began
with a string of ’s, which therefore became
nothing more than tally marks for thousands. The
more of them there were in a numeral, the more
one would have to fall back on tallying
(examining many instances of the symbol one by
one) in order to do arithmetic.

Just as one could upgrade the vocabulary of an
ancient writing system by adding pictograms, so
one could add symbols to a system of numerals to
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increase its range. And this was done. But the
resulting system would still always have a highest-
valued symbol, and hence would not be universal
for doing arithmetic without tallying.

The only way to emancipate arithmetic from
tallying is with rules of universal reach. As with
alphabets, a small set of basic rules and symbols is
sufficient. The universal system in general use
today has ten symbols, the digits 0 to 9, and its
universality is due to a rule that the value of a
digit depends on its position in the number. For
instance, the digit 2 means two when written by
itself, but means two hundred in the numeral 204.
Such ‘positional’ systems require ‘placeholders’,
such as the digit 0 in 204, whose only function is
to place the 2 into the position where it means
two hundred.

This system originated in India, but it is not
known when. It might have been as late as the
ninth century, since before that only a few
ambiguous documents seem to show it in use. At
any rate, its tremendous potential in science,
mathematics, engineering and trade was not
widely realized. At approximately that time it was
embraced by Arab scholars, yet was not generally
used in the Arab world until a thousand years
later. This curious lack of enthusiasm for
universality was repeated in medieval Europe: a
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few scholars adopted Indian numerals from the
Arabs in the tenth century (resulting in the
misnomer ‘Arabic numerals’), but again these
numerals did not come into everyday use for
centuries.

As early as 1900 BCE the ancient Babylonians
had invented what was in effect a universal
system of numerals, but they too may not have
cared about its universality – nor even been aware
of it. It was a positional system, but very
cumbersome compared with the Indian one. It had
59 ‘digits’, each of which was itself written as a
numeral in a Roman-numeral-like system. So
using it for arithmetic with numbers occurring in
everyday life was actually more complicated than
using Roman numerals. It also had no symbol for
zero, so it used spaces as placeholders. It had no
way of representing trailing zeros, and no
equivalent of the decimal point (as if, in our
system, the numbers 200, 20, 2, 0.2 and so on
were all written as 2, and were distinguished only
by context). All this suggests that universality was
not the system’s main design objective, and that it
was not greatly valued when it was achieved.

Perhaps an insight into this recurring oddity is
provided by a remarkable episode in the third
century BCE involving the ancient Greek scientist
and mathematician Archimedes. His research in
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astronomy and pure mathematics led him to a
need to do arithmetic with some rather large
numbers, so he had to invent his own system of
numerals. His starting point was a Greek system
with which he was familiar, similar to the Roman
one but with a highest-valued symbol M for
10,000 (one myriad). The range of the system had
already been extended with the rule that digits
written above an M would be multiplied by a
myriad. For instance, the symbol for twenty was κ
and the symbol for four was δ, so they could write
twenty-four myriad (240,000) as .

If only they had allowed that rule to generate
multi-tier numerals, so that  would mean
twenty-four myriad myriad, the system would
have been universal. But apparently they never
did. Even more surprisingly, nor did Archimedes.
His system used a different idea, similar to
modern ‘scientific notation’ (in which, say, two
million is written 2×106), except that instead of
powers of ten it used powers of a myriad myriad.
But, again, he then required the exponent (the
power to which the myriad myriad was raised) to
be an existing Greek numeral – that is to say, it
could not easily exceed a myriad myriad or so.
Hence this construction petered out after the
number that we call 10800,000,000. If only he had
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not imposed that additional rule, he would have
had a universal system, albeit an unnecessarily
awkward one.

Even today, only mathematicians ever need
numbers above 10800,000,000, and only rarely at
that. But that cannot be why Archimedes imposed
the restriction, for he did not stop there. Exploring
the concept of numbers further, he set up yet
another extension, this time amounting to an even
more unwieldy system with base 10800,000,000. Yet,
once again, he allowed this number to be raised
only to powers not exceeding 800,000,000, thus
imposing an arbitrary limit somewhere in excess
of 106.4×1017.

Why? Today it seems very perverse of
Archimedes to have placed limits on which
symbols could be used at which positions in his
numerals. There is no mathematical justification
for them. But, if Archimedes had been willing to
allow his rules to be applied without arbitrary
limits, he could have invented a much better
universal system just by removing the arbitrary
limits from the existing Greek system. A few years
later the mathematician Apollonius invented yet
another system of numerals which fell short of
universality for the same reason. It is as though
everyone in the ancient world was avoiding
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universality on purpose.
The mathematician Pierre Simon Laplace

(1749–1827) wrote, of the Indian system, ‘We
shall appreciate the grandeur of this achievement
when we remember that it escaped the genius of
Archimedes and Apollonius, two of the greatest
minds produced by antiquity.’ But was this really
something that escaped them, or something that
they chose to steer clear of? Archimedes must
have been aware that his method of extending a
number system – which he used twice in
succession – could be continued indefinitely. But
perhaps he doubted that the resulting numerals
would refer to anything about which one could
validly reason. Indeed, one motivation for that
whole project was to contradict the idea – which
was a truism at the time – that the grains of sand
on a beach could literally not be numbered. So he
used his system to calculate the number of grains
of sand that would be needed to fill the entire
celestial sphere. This suggests that he, and ancient
Greek culture in general, may not have had the
concept of an abstract number at all, so that, for
them, numerals could refer only to objects – if
only objects of the imagination. In that case
universality would have been a difficult property
to grasp, let alone to aspire to. Or maybe he
merely felt that he had to avoid aspiring to
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infinite reach in order to make a convincing case.
At any rate, although from our perspective
Archimedes’ system repeatedly ‘tried’ to jump to
universality, he apparently did not want it to.

Here is an even more speculative possibility.
The largest benefits of any universality, beyond
whatever parochial problem it is intended to
solve, come from its being useful for further
innovation. And innovation is unpredictable. So,
to appreciate universality at the time of its
discovery, one must either value abstract
knowledge for its own sake or expect it to yield
unforeseeable benefits. In a society that rarely
experienced change, both those attitudes would be
quite unnatural. But that was reversed with the
Enlightenment, whose quintessential idea is, as I
have said, that progress is both desirable and
attainable. And so, therefore, is universality.

Be that as it may, with the Enlightenment,
parochialism and all arbitrary exceptions and
limitations began to be regarded as inherently
problematic – and not only in science. Why should
the law treat an aristocrat differently from a
commoner? A slave from a master? A woman from
a man? Enlightenment philosophers such as Locke
set out to free political institutions from arbitrary
rules and assumptions. Others tried to derive
moral maxims from universal moral explanations
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rather than merely to postulate them
dogmatically. Thus universal explanatory theories
of justice, legitimacy and morality began to take
their place alongside universal theories of matter
and motion. In all those cases, universality was
being sought deliberately, as a desirable feature in
its own right – even a necessary feature for an
idea to be true – and not just as a means of solving
a parochial problem.

A jump to universality that played an important
role in the early history of the Enlightenment was
the invention of movable-type printing. Movable
type consisted of individual pieces of metal, each
embossed with one letter of the alphabet. Earlier
forms of printing had merely streamlined writing
in the same way that Roman numerals streamlined
tallying: each page was engraved on a printing
plate and thus all the symbols on it could be
copied in a single action. But, given a supply of
movable type with several instances of each letter,
one does no further metalwork. One merely
arranges the type into words and sentences. One
does not have to know, in order to manufacture
type, what the documents that it will eventually
print are going to say: it is universal.

Even so, movable type did not make much
difference when it was invented in China in the
eleventh century, perhaps because of the usual
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lack of interest in universality, or perhaps because
the Chinese writing system used thousands of
pictograms, which diminished the immediate
advantages of a universal printing system. But
when it was reinvented by the printer Johannes
Gutenberg in Europe in the fifteenth century,
using alphabetic type, it initiated an avalanche of
further progress.

Here we see a transition that is typical of the
jump to universality: before the jump, one has to
make specialized objects for each document to be
printed; after the jump, one customizes (or
specializes, or programs) a universal object – in
this case a printing press with movable type.
Similarly, in 1801 Joseph Marie Jacquard
invented a general-purpose silk-weaving machine
now known as the Jacquard loom. Instead of
having to control manually each row of stitches in
each individual bolt of patterned silk, one could
program an arbitrary pattern on punched cards
which would instruct the machine to weave that
pattern any number of times.

The most momentous such technology is that of
computers, on which an increasing proportion of
all technology now depends, and which also has
deep theoretical and philosophical significance.
The jump to computational universality should
have happened in the 1820s, when the
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mathematician Charles Babbage designed a device
that he called the Difference Engine – a mechanical
calculator which represented decimal digits by
cogs, each of which could click into one of ten
positions. His original purpose was parochial: to
automate the production of tables of mathematical
functions such as logarithms and cosines, which
were heavily used in navigation and engineering.
At the time, they were compiled by armies of
clerks known as ‘computers’ (which is the origin
of the word), and were notoriously error-prone.
The Difference Engine would make fewer errors,
because the rules of arithmetic would be built into
its hardware. To make it print out a table of a
given function, one would program it only once
with the definition of the function in terms of
simple operations. In contrast, human ‘computers’
had to use (or be used by) both the definition and
the general rules of arithmetic thousands of times
per table, each time being an opportunity for
human error.

Unfortunately, despite pouring a fortune of his
own money and that of the British government
into the project, Babbage was such a poor
organizer that he never succeeded in building a
Difference Engine. But his design was sound (apart
from a few trivial mistakes), and in 1991 a team
led by the engineer Doron Swade at London’s
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Science Museum successfully implemented it,
using engineering tolerances achievable in
Babbage’s time.

By the standards of today’s computers and even
calculators, the Difference Engine had an
extremely limited repertoire. But the reason it
could exist at all is that there is a regularity
among all the mathematical functions that occur
in physics, and hence in navigation and
engineering. These are known as analytic functions,
and in 1710 the mathematician Brook Taylor had
discovered that they can all be approximated
arbitrarily well using only repeated additions and
multiplications – the operations that the
Difference Engine performs. (Special cases had
been known before that, but the jump to
universality was proved by Taylor.) Thus, to solve
the parochial problem of computing the handful
of functions that needed to be tabulated, Babbage
created a calculator that was universal for
calculating analytic functions. It also made use of
the universality of movable type, in its typewriter-
like printer, without which the process of printing
the tables could not have been fully automated.

Babbage originally had no conception of
computational universality. Nevertheless, the
Difference Engine already comes remarkably close
to it – not in its repertoire of computations, but in
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its physical constitution. To program it to print
out a given table, one initializes certain cogs.
Babbage eventually realized that this
programming phase could itself be automated: the
settings could be prepared on punched cards like
Jacquard’s, and transferred mechanically into the
cogs. This would not only remove the main
remaining source of error, but also increase the
machine’s repertoire. Babbage then realized that if
the machine could also punch new cards for its
own later use, and could control which punched
card it would read next (say, by choosing from a
stack of them, depending on the position of its
cogs), then something qualitatively new would
happen: the jump to universality.

Babbage called this improved machine the
Analytical Engine. He and his colleague the
mathematician Ada, Countess of Lovelace, knew
that it would be capable of computing anything
that human ‘computers’ could, and that this
included more than just arithmetic: it could do
algebra, play chess, compose music, process
images and so on. It would be what is today called
a universal classical computer. (I shall explain the
significance of the proviso ‘classical’ in Chapter
11, when I discuss quantum computers, which
operate at a still higher level of universality.)

Neither they nor anyone else for over a century
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afterwards imagined today’s most common uses of
computation, such as the internet, word
processing, database searching, and games. But
another important application that they did
foresee was making scientific predictions. The
Analytical Engine would be a universal simulator
– able to predict the behaviour, to any desired
accuracy, of any physical object, given the
relevant laws of physics. This is the universality
that I mentioned in Chapter 3, through which
physical objects that are unlike each other and
dominated by different laws of physics (such as
brains and quasars) can exhibit the same
mathematical relationships.

Babbage and Lovelace were Enlightenment
people, and so they understood that the
universality of the Analytical Engine would make
it an epoch-making technology. Even so, despite
great efforts, they failed to pass their enthusiasm
on to more than a handful of others, who in turn
failed to pass it to anyone. And so the Analytical
Engine became one of the tragic might-have-beens
of history. If only they had looked around for
other implementations, they might have realized
that the perfect one was already waiting for them:
electrical relays (switches controlled by electric
currents). These had been one of the first
applications of fundamental research into
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electromagnetism, and they were about to be mass
produced for the technological revolution of
telegraphy. A redesigned Analytical Engine, using
on/off electrical currents to represent binary digits
and relays to do the computation, would have
been faster than Babbage’s and also cheaper and
easier to construct. (Binary numbers were already
well known. The mathematician and philosopher
Gottfried Wilhelm Leibniz had even suggested
using them for mechanical calculation in the
seventeenth century.) So the computer revolution
would have happened a century earlier than it
did. Because of the technologies of telegraphy and
printing that were being developed concurrently,
an internet revolution might well have followed.
The science-fiction authors William Gibson and
Bruce Sterling, in their novel The Difference Engine,
have given an exciting account of what that might
have been like. The journalist Tom Standage, in
his book The Victorian Internet, maintains that the
early telegraph system, even without computers,
did create an internet-like phenomenon among the
operators, with ‘hackers, on-line romances and
weddings, chat-rooms, flame wars . . . and so on’.

Babbage and Lovelace also thought about one
application of universal computers that has not
been achieved to this day, namely so-called
artificial intelligence (AI). Since human brains are
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physical objects obeying the laws of physics, and
since the Analytical Engine is a universal
simulator, it could be programmed to think, in
every sense that humans can (albeit very slowly
and requiring an impractically vast number of
punched cards). Nevertheless, Babbage and
Lovelace denied that it could. Lovelace argued
that ‘The Analytical Engine has no pretensions
whatever to originate anything. It can do
whatever we know how to order it to perform. It
can follow analysis; but it has no power of
anticipating any analytical relations or truths.’

The mathematician and computer pioneer Alan
Turing later called this mistake ‘Lady Lovelace’s
objection’. It was not computational universality
that Lovelace failed to appreciate, but the
universality of the laws of physics. Science at the
time had almost no knowledge of the physics of
the brain. Also, Darwin’s theory of evolution had
not yet been published, and supernatural accounts
of the nature of human beings were still prevalent.
Today there is less mitigation for the minority of
scientists and philosophers who still believe that
AI is unattainable. For instance, the philosopher
John Searle has placed the AI project in the
following historical perspective: for centuries,
some people have tried to explain the mind in
mechanical terms, using similes and metaphors
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based on the most complex machines of the day.
First the brain was supposed to be like an
immensely complicated set of gears and levers.
Then it was hydraulic pipes, then steam engines,
then telephone exchanges – and, now that
computers are our most impressive technology,
brains are said to be computers. But this is still no
more than a metaphor, says Searle, and there is no
more reason to expect the brain to be a computer
than a steam engine.

But there is. A steam engine is not a universal
simulator. But a computer is, so expecting it to be
able to do whatever neurons can is not a
metaphor: it is a known and proven property of
the laws of physics as best we know them. (And,
as it happens, hydraulic pipes could also be made
into a universal classical computer, and so could
gears and levers, as Babbage showed.)

Ironically, Lady Lovelace’s objection has almost
the same logic as Douglas Hofstadter’s argument
for reductionism (Chapter 5) – yet Hofstadter is
one of today’s foremost proponents of the
possibility of AI. That is because both of them
share the mistaken premise that low-level
computational steps cannot possibly add up to a
higher-level ‘I’ that affects anything. The
difference between them is that they chose
opposite horns of the dilemma that that poses:

262



Lovelace chose the false conclusion that AI is
impossible, while Hofstadter chose the false
conclusion that no such ‘I’ can exist.

Because of Babbage’s failure either to build a
universal computer or to persuade others to do so,
an entire century would pass before the first one
was built. During that time, what happened was
more like the ancient history of universality:
although calculating machines similar to the
Difference Engine were being built by others even
before Babbage had given up, the Analytical
Engine was almost entirely ignored even by
mathematicians.

In 1936 Turing developed the definitive theory
of universal classical computers. His motivation
was not to build such a computer, but only to use
the theory abstractly to study the nature of
mathematical proof. And when the first universal
computers were built, a few years later, it was,
again, not out of any special intention to
implement universality. They were built in Britain
and the United States during the Second World
War for specific wartime applications. The British
computers, named Colossus (in which Turing was
involved), were used for code-breaking; the
American one, ENIAC, was designed to solve the
equations needed for aiming large guns. The
technology used in both was electronic vacuum
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tubes, which acted like relays but about a hundred
times as fast. At the same time, in Germany, the
engineer Konrad Zuse was building a
programmable calculator out of relays – just as
Babbage should have done. All three of these
devices had the technological features necessary
to be a universal computer, but none of them was
quite configured for this. In the event, the
Colossus machines never did anything but code-
breaking, and most were dismantled after the war.
Zuse’s machine was destroyed by Allied bombing.
But ENIAC was allowed to jump to universality:
after the war it was put to diverse uses for which
it had never been designed, such as weather
forecasting and the hydrogen-bomb project.

The history of electronic technology since the
Second World War has been dominated by
miniaturization, with ever more microscopic
switches being implemented in each new device.
These improvements led to a jump to universality
in about 1970, when several companies
independently produced a microprocessor, a
universal classical computer on a single silicon
chip. From then on, designers of any information-
processing device could start with a
microprocessor and then customize it – program it
– to perform the specific tasks needed for that
device. Today, your washing machine is almost
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certainly controlled by a computer that could be
programmed to do astrophysics or word
processing instead, if it were given suitable input–
output devices and enough memory to hold the
necessary data.

It is a remarkable fact that, in that sense (that is
to say, ignoring issues of speed, memory capacity
and input–output devices), the human ‘computers’
of old, the steam-powered Analytical Engine with
its literal bells and whistles, the room-sized
vacuum-tube computers of the Second World War,
and present-day supercomputers all have an
identical repertoire of computations.

Another thing that they have in common is that
they are all digital: they operate on information in
the form of discrete values of physical variables,
such as electronic switches being on or off, or cogs
being at one of ten positions. The alternative,
‘analogue’, computers, such as slide rules, which
represent information as continuous physical
variables, were once ubiquitous but are hardly
ever used today. That is because a modern digital
computer can be programmed to imitate any of
them, and to outperform them in almost any
application. The jump to universality in digital
computers has left analogue computation behind.
That was inevitable, because there is no such
thing as a universal analogue computer.
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That is because of the need for error correction:
during lengthy computations, the accumulation of
errors due to things like imperfectly constructed
components, thermal fluctuations, and random
outside influences makes analogue computers
wander off the intended computational path. This
may sound like a minor or parochial
consideration. But it is quite the opposite. Without
error-correction all information processing, and
hence all knowledge-creation, is necessarily
bounded. Error-correction is the beginning of
infinity.

For example, tallying is universal only if it is
digital. Imagine that some ancient goatherds had
tried to tally the total length of their flock instead
of the number. As each goat left the enclosure,
they could reel out some string of the same length
as the goat. Later, when the goats returned, they
could reel that length back in. When the whole
length had been reeled back in, that would mean
that all the goats had returned. But in practice the
outcome would always be at least a little long or
short, because of the accumulation of
measurement errors. For any given accuracy of
measurement, there would be a maximum number
of goats that could be reliably tallied by this
‘analogue tallying’ system. The same would be
true of all arithmetic performed with those
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‘tallies’. Whenever the strings representing several
flocks were added together, or a string was cut in
two to record the splitting of a flock, and
whenever a string was ‘copied’ by making another
of the same length, there would be errors. One
could mitigate their effect by performing each
operation many times, and then keeping only the
outcome of median length. But the operations of
comparing or duplicating lengths can themselves
be performed only with finite accuracy, and so
could not reduce the rate of error accumulation
per step below that level of accuracy. That would
impose a maximum number of consecutive
operations that could be performed before the
result became useless for a given purpose – which
is why analogue computation can never be
universal.

What is needed is a system that takes for
granted that errors will occur, but corrects them
once they do – a case of ‘problems are inevitable,
but they are soluble’ at the lowest level of
information-processing emergence. But, in
analogue computation, error correction runs into
the basic logical problem that there is no way of
distinguishing an erroneous value from a correct
one at sight, because it is in the very nature of
analogue computation that every value could be
correct. Any length of string might be the right
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length.
And that is not so in a computation that

confines itself to whole numbers. Using the same
string, we might represent whole numbers as
lengths of string in whole numbers of inches. After
each step, we trim or lengthen the resulting
strings to the nearest inch. Then errors would no
longer accumulate. For example, suppose that the
measurements could all be done to a tolerance of
a tenth of an inch. Then all errors would be
detected and eliminated after each step, which
would eliminate the limit on the number of
consecutive steps.

So all universal computers are digital; and all
use error-correction with the same basic logic that
I have just described, though with many different
implementations. Thus Babbage’s computers
assigned only ten different meanings to the whole
continuum of angles at which a cogwheel might
be oriented. Making the representation digital in
that way allowed the cogs to carry out error-
correction automatically: after each step, any
slight drift in the orientation of the wheel away
from its ten ideal positions would immediately be
corrected back to the nearest one as it clicked into
place. Assigning meanings to the whole
continuum of angles would nominally have
allowed each wheel to carry (infinitely) more
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information; but, in reality, information that
cannot be reliably retrieved is not really being
stored.

Fortunately, the limitation that the information
being processed must be digital does not detract
from the universality of digital computers – or of
the laws of physics. If measuring the goats in
whole numbers of inches is insufficient for a
particular application, use whole numbers of
tenths of inches, or billionths. The same holds for
all other applications: the laws of physics are such
that the behaviour of any physical object – and
that includes any other computer – can be
simulated with any desired accuracy by a
universal digital computer. It is just a matter of
approximating continuously variable quantities by
a sufficiently fine grid of discrete ones.

Because of the necessity for error-correction, all
jumps to universality occur in digital systems. It is
why spoken languages build words out of a finite
set of elementary sounds: speech would not be
intelligible if it were analogue. It would not be
possible to repeat, nor even to remember, what
anyone had said. Nor, therefore, does it matter
that universal writing systems cannot perfectly
represent analogue information such as tones of
voice. Nothing can represent those perfectly. For
the same reason, the sounds themselves can
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represent only a finite number of possible
meanings. For example, humans can distinguish
between only about seven different sound
volumes. This is roughly reflected in standard
musical notation, which has approximately seven
different symbols for loudness (such as p, mf, f,
and so on). And, for the same reason, speakers can
only intend a finite number of possible meanings
with each utterance.

Another striking connection between all those
diverse jumps to universality is that they all
happened on Earth. In fact all known jumps to
universality happened under the auspices of
human beings – except one, which I have not
mentioned yet, and from which all the others,
historically, emerged. It happened during the
early evolution of life.

Genes in present-day organisms replicate
themselves by a complicated and very indirect
chemical route. In most species they act as
templates for forming stretches of a similar
molecule, RNA. Those then act as programs which
direct the synthesis of the body’s constituent
chemicals, especially enzymes, which are catalysts.
A catalyst is a kind of constructor – it promotes a
change among other chemicals while remaining
unchanged itself. Those catalysts in turn control
all the chemical production and regulatory
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functions of an organism, and hence define the
organism itself, crucially including a process that
makes a copy of the DNA. How that intricate
mechanism evolved is not essential here, but for
definiteness let me sketch one possibility.

About four billion years ago – soon after the
surface of the Earth had cooled sufficiently for
liquid water to condense – the oceans were being
churned by volcanoes, meteor impacts, storms and
much stronger tides than today’s (because the
moon was closer). They were also highly active
chemically, with many kinds of molecules being
continually formed and transformed, some
spontaneously and some by catalysts. One such
catalyst happened to catalyse the formation of
some of the very kinds of molecules from which it
itself was formed. That catalyst was not alive, but
it was the first hint of life.

It had not yet evolved to be a well-targeted
catalyst, so it also accelerated the production of
some other chemicals, including variants of itself.
Those that were best at promoting their own
production (and inhibiting their own destruction)
relative to other variants became more numerous.
They too promoted the construction of variants of
themselves, and so evolution continued.

Gradually, the ability of these catalysts to
promote their own production became robust and
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specific enough for it to be worth calling them
replicators. Evolution produced replicators that
caused themselves to be replicated ever faster and
more reliably.

Different replicators began to join forces in
groups, each of whose members specialized in
causing one part of a complex web of chemical
reactions whose net effect was to construct more
copies of the entire group. Such a group was a
rudimentary organism. At that point, life was at a
stage roughly analogous to that of non-universal
printing, or Roman numerals: it was no longer a
case of each replicator for itself, but there was still
no universal system being customized or
programmed to produce specific substances.

The most successful replicators may have been
RNA molecules. They have catalytic properties of
their own, depending on the precise sequence of
their constituent molecules (or bases, which are
similar to those of DNA). As a result, the
replication process became ever less like
straightforward catalysis and ever more like
programming – in a language, or genetic code,
that used bases as its alphabet.

Genes are replicators that can be interpreted as
instructions in a genetic code. Genomes are groups
of genes that are dependent on each other for
replication. The process of copying a genome is
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called a living organism. Thus the genetic code is
also a language for specifying organisms. At some
point, the system switched to replicators made of
DNA, which is more stable than RNA and
therefore more suitable for storing large amounts
of information.

The familiarity of what happened next can
obscure how remarkable and mysterious it is.
Initially, the genetic code and the mechanism that
interpreted it were both evolving along with
everything else in the organisms. But there came a
moment when the code stopped evolving yet the
organisms continued to do so. At that moment the
system was coding for nothing more complex than
primitive, single-celled creatures. Yet virtually all
subsequent organisms on Earth, to this day, have
not only been based on DNA replicators but have
used exactly the same alphabet of bases, grouped
into three-base ‘words’, with only small variations
in the meanings of those ‘words’.

That means that, considered as a language for
specifying organisms, the genetic code has
displayed phenomenal reach. It evolved only to
specify organisms with no nervous systems, no
ability to move or exert forces, no internal organs
and no sense organs, whose lifestyle consisted of
little more than synthesizing their own structural
constituents and then dividing in two. And yet the
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same language today specifies the hardware and
software for countless multicellular behaviours
that had no close analogue in those organisms,
such as running and flying and breathing and
mating and recognizing predators and prey. It also
specifies engineering structures such as wings and
teeth, and nanotechnology such as immune
systems, and even a brain that is capable of
explaining quasars, designing other organisms
from scratch, and wondering why it exists.

During the entire evolution of the genetic code,
it was displaying far less reach. It may be that
each successive variant of it was used to specify
only a few species that were very similar to each
other. At any rate, it must have been a frequent
occurrence that a species embodying new
knowledge was specified in a new variant of the
genetic code. But then the evolution stopped, at a
point when it had already attained enormous
reach. Why? It looks like a jump to some sort of
universality, does it not?

What happened next followed the same sad
pattern that I have described in other stories of
universality: for well over a billion years after the
system had reached universality and stopped
evolving, it was still only being used to make
bacteria. That means that the reach that we can
now see that the system had was to remain
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unused for longer than the system itself had taken
to evolve from non-living precursors. If intelligent
extraterrestrials had visited Earth at any time
during those billion years they would have seen
no evidence that the genetic code could specify
anything significantly different from the
organisms that it had specified when it first
appeared.

Reach always has an explanation. But this time,
to the best of my knowledge, the explanation is
not yet known. If the reason for the jump in reach
was that it was a jump to universality, what was
the universality? The genetic code is presumably
not universal for specifying life forms, since it relies
on specific types of chemicals, such as proteins.
Could it be a universal constructor? Perhaps. It
does manage to build with inorganic materials
sometimes, such as the calcium phosphate in
bones, or the magnetite in the navigation system
inside a pigeon’s brain. Biotechnologists are
already using it to manufacture hydrogen and to
extract uranium from seawater. It can also
program organisms to perform constructions
outside their bodies: birds build nests; beavers
build dams. Perhaps it would it be possible to
specify, in the genetic code, an organism whose
life cycle includes building a nuclear-powered
spaceship. Or perhaps not. I guess it has some
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lesser, and not yet understood, universality.
In 1994 the computer scientist and molecular

biologist Leonard Adleman designed and built a
computer composed of DNA together with some
simple enzymes, and demonstrated that it was
capable of performing some sophisticated
computations. At the time, Adleman’s DNA
computer was arguably the fastest computer in the
world. Further, it was clear that a universal
classical computer could be made in a similar
way. Hence we know that, whatever that other
universality of the DNA system was, the
universality of computation had also been
inherent in it for billions of years, without ever
being used – until Adleman used it.

The mysterious universality of DNA as a
constructor may have been the first universality to
exist. But, of all the different forms of universality,
the most significant physically is the characteristic
universality of people, namely that they are
universal explainers, which makes them universal
constructors as well. The effects of that
universality are, as I have explained, explicable
only by means of the full gamut of fundamental
explanations. It is also the only kind of
universality capable of transcending its parochial
origins: universal computers cannot really be
universal unless there are people present to
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provide energy and maintenance – indefinitely.
And the same is true of all those other
technologies. Even life on Earth will eventually be
extinguished, unless people decide otherwise.
Only people can rely on themselves into the
unbounded future.

TERMINOLOGY
The jump to universality   The tendency of

gradually improving systems to undergo a
sudden large increase in functionality, becoming
universal in some domain.

MEANINGS OF ‘THE BEGINNING OF INFINITY’
ENCOUNTERED IN THIS CHAPTER

– The existence of universality in many fields.
– The jump to universality.
– Error-correction in computation.
– The fact that people are universal explainers.
– The origin of life.
– The mysterious universality to which the genetic

code jumped.

SUMMARY
All knowledge growth is by incremental
improvement, but in many fields there comes a
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point when one of the incremental improvements
in a system of knowledge or technology causes a
sudden increase in reach, making it a universal
system in the relevant domain. In the past,
innovators who brought about such a jump to
universality had rarely been seeking it, but since
the Enlightenment they have been, and universal
explanations have been valued both for their own
sake and for their usefulness. Because error-
correction is essential in processes of potentially
unlimited length, the jump to universality only
ever happens in digital systems.
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